
CS413 - Software Engineering Project Management

Software Evolution and Software
Configuration Management

Dr. Mustafa Değerli

Department of Computer Engineering, Bilkent University

Chapter 9 – Software Evolution

Chapter 9 Software Evolution 230/10/2014

Software change

² Software change is inevitable
§ New requirements emerge when the software is used;
§ The business environment changes;
§ Errors must be repaired;
§ New computers and equipment is added to the system;
§ The performance or reliability of the system may have to be

improved.

² A key problem for all organizations is implementing and
managing change to their existing software systems.

Chapter 9 Software Evolution 330/10/2014

Importance of evolution

² Organisations have huge investments in their software
systems - they are critical business assets.

² To maintain the value of these assets to the business,
they must be changed and updated.

² The majority of the software budget in large companies
is devoted to changing and evolving existing software
rather than developing new software.

Chapter 9 Software Evolution 430/10/2014

A spiral model of development and evolution

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

etc.

Chapter 9 Software Evolution 530/10/2014

Evolution and servicing

Chapter 9 Software Evolution 6

Software
development Software

evolution Software
servicing Software

retirement

Time

30/10/2014

Evolution and servicing

² Evolution
§ The stage in a software system’s life cycle where it is in

operational use and is evolving as new requirements are
proposed and implemented in the system.

² Servicing
§ At this stage, the software remains useful but the only changes

made are those required to keep it operational i.e. bug fixes and
changes to reflect changes in the software’s environment. No
new functionality is added.

² Phase-out
§ The software may still be used but no further changes are made

to it.

Chapter 9 Software Evolution 730/10/2014

Evolution processes

² Software evolution processes depend on
§ The type of software being maintained;
§ The development processes used;
§ The skills and experience of the people involved.

² Proposals for change are the driver for system evolution.
§ Should be linked with components that are affected by the

change, thus allowing the cost and impact of the change to be
estimated.

² Change identification and evolution continues throughout
the system lifetime.

Chapter 9 Software Evolution 830/10/2014

Change identification and evolution processes

Change proposalsNew system

Change identification
process

Software evolution
process

Chapter 9 Software Evolution 930/10/2014

The software evolution process

Chapter 9 Software Evolution 10

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancementFault repair

30/10/2014

Change implementation

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

Chapter 9 Software Evolution 1130/10/2014

The emergency repair process

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

Chapter 9 Software Evolution 1230/10/2014

Agile methods and evolution

² Agile methods are based on incremental development so
the transition from development to evolution is a
seamless one.
§ Evolution is simply a continuation of the development process

based on frequent system releases.

² Automated regression testing is particularly valuable
when changes are made to a system.

² Changes may be expressed as additional user stories.

Chapter 9 Software Evolution 1330/10/2014

Legacy systems

² Legacy systems are older systems that rely on
languages and technology that are no longer used for
new systems development.

² Legacy software may be dependent on older hardware,
such as mainframe computers and may have associated
legacy processes and procedures.

² Legacy systems are not just software systems but are
broader socio-technical systems that include hardware,
software, libraries and other supporting software and
business processes.

Chapter 9 Software Evolution 1430/10/2014

‘Bad smells’ in program code

² Duplicate code
§ The same or very similar code may be included at different

places in a program. This can be removed and implemented as a
single method or function that is called as required.

² Long methods
§ If a method is too long, it should be redesigned as a number of

shorter methods.

² Switch (case) statements
§ These often involve duplication, where the switch depends on

the type of a value. The switch statements may be scattered
around a program. In object-oriented languages, you can often
use polymorphism to achieve the same thing.

Chapter 9 Software Evolution 1530/10/2014

‘Bad smells’ in program code

² Data clumping
§ Data clumps occur when the same group of data items (fields in

classes, parameters in methods) re-occur in several places in a
program. These can often be replaced with an object that
encapsulates all of the data.

² Speculative generality
§ This occurs when developers include generality in a program in

case it is required in the future. This can often simply be
removed.

Chapter 9 Software Evolution 1630/10/2014

Key points

² Software development and evolution can be thought of
as an integrated, iterative process that can be
represented using a spiral model.

² For custom systems, the costs of software maintenance
usually exceed the software development costs.

² The process of software evolution is driven by requests
for changes and includes change impact analysis,
release planning and change implementation.

² Legacy systems are older software systems, developed
using obsolete software and hardware technologies, that
remain useful for a business.

Chapter 9 Software Evolution 1730/10/2014

Key points

² It is often cheaper and less risky to maintain a legacy
system than to develop a replacement system using
modern technology.

² The business value of a legacy system and the quality of
the application should be assessed to help decide if a
system should be replaced, transformed or maintained.

² There are 3 types of software maintenance, namely bug
fixing, modifying software to work in a new environment,
and implementing new or changed requirements.

Chapter 9 Software Evolution 1830/10/2014

Key points

² Software re-engineering is concerned with re-structuring
and re-documenting software to make it easier to
understand and change.

² Refactoring, making program changes that preserve
functionality, is a form of preventative maintenance.

Chapter 9 Software Evolution 1930/10/2014

Chapter 25 – Configuration Management

Chapter 25 Configuration management 2011/12/2014

Configuration management

² Software systems are constantly changing during
development and use.

² Configuration management (CM) is concerned with the
policies, processes and tools for managing changing
software systems.

² You need CM because it is easy to lose track of what
changes and component versions have been
incorporated into each system version.

² CM is essential for team projects to control changes
made by different developers

Chapter 25 Configuration management 2111/12/2014

CM activities

² Version management
§ Keeping track of the multiple versions of system components and

ensuring that changes made to components by different developers do
not interfere with each other.

² System building
§ The process of assembling program components, data and libraries,

then compiling these to create an executable system.

² Change management
§ Keeping track of requests for changes to the software from customers

and developers, working out the costs and impact of changes, and
deciding the changes should be implemented.

² Release management
§ Preparing software for external release and keeping track of the system

versions that have been released for customer use.
Chapter 25 Configuration management 2211/12/2014

Agile development and CM

² Agile development, where components and systems are
changed several times per day, is impossible without
using CM tools.

² The definitive versions of components are held in a
shared project repository and developers copy these into
their own workspace.

² They make changes to the code then use system
building tools to create a new system on their own
computer for testing. Once they are happy with the
changes made, they return the modified components to
the project repository.

11/12/2014 Chapter 25 Configuration management 23

Multi-version systems

² For large systems, there is never just one ‘working’
version of a system.

² There are always several versions of the system at
different stages of development.

² There may be several teams involved in the
development of different system versions.

11/12/2014 Chapter 25 Configuration management 24

CM terminology

Term Explanation

Baseline A baseline is a collection of component versions that make up a system.
Baselines are controlled, which means that the versions of the
components making up the system cannot be changed. This means that
it is always possible to recreate a baseline from its constituent
components.

Branching The creation of a new codeline from a version in an existing codeline.
The new codeline and the existing codeline may then develop
independently.

Codeline A codeline is a set of versions of a software component and other
configuration items on which that component depends.

Configuration
(version) control

The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions
of components are identified and stored for the lifetime of the system.

Configuration item or
software configuration
item (SCI)

Anything associated with a software project (design, code, test data,
document, etc.) that has been placed under configuration control. There
are often different versions of a configuration item. Configuration items
have a unique name.

Mainline A sequence of baselines representing different versions of a system.

Chapter 25 Configuration management 2511/12/2014

CM terminology

Term Explanation

Merging The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have
been created by a previous branch of one of the codelines involved.

Release A version of a system that has been released to customers (or other
users in an organization) for use.

Repository A shared database of versions of software components and meta-
information about changes to these components.

System building The creation of an executable system version by compiling and linking
the appropriate versions of the components and libraries making up the
system.

Version An instance of a configuration item that differs, in some way, from other
instances of that item. Versions always have a unique identifier.

Workspace A private work area where software can be modified without affecting
other developers who may be using or modifying that software.

Chapter 25 Configuration management 2611/12/2014

Change management

² Organizational needs and requirements change during
the lifetime of a system, bugs have to be repaired and
systems have to adapt to changes in their environment.

² Change management is intended to ensure that system
evolution is a managed process and that priority is given
to the most urgent and cost-effective changes.

² The change management process is concerned with
analyzing the costs and benefits of proposed changes,
approving those changes that are worthwhile and
tracking which components in the system have been
changed.

Chapter 25 Configuration management 2711/12/2014

The change
management
process

Chapter 25 Configuration management 2811/12/2014

Change
requests

Submit
CR

Check CR

Close CR

Implementation
analysis

Cost/impact
analysisAssess CRs

Select CRs Modify
software

Test software

Close CR

Close CRs

ValidInvalid

Pass
Fail

Customer
Customer support

Development

Product development/CCB

Register CR

Factors in change analysis

² The consequences of not making the change

² The benefits of the change
² The number of users affected by the change

² The costs of making the change

² The product release cycle

Chapter 25 Configuration management 2911/12/2014

Change management and agile methods

² In some agile methods, customers are directly involved
in change management.

² The propose a change to the requirements and work
with the team to assess its impact and decide whether
the change should take priority over the features planned
for the next increment of the system.

² Changes to improve the software improvement are
decided by the programmers working on the system.

² Refactoring, where the software is continually improved,
is not seen as an overhead but as a necessary part of
the development process.

Chapter 25 Configuration management 3011/12/2014

Key points

² Configuration management is the management of an evolving
software system. When maintaining a system, a CM team is put in
place to ensure that changes are incorporated into the system in a
controlled way and that records are maintained with details of the
changes that have been implemented.

² The main configuration management processes are concerned with
version management, system building, change management, and
release management.

² Version management involves keeping track of the different versions
of software components as changes are made to them.

Chapter 25 Configuration management 3111/12/2014

Key points

² System building is the process of assembling system components
into an executable program to run on a target computer system.

² Software should be frequently rebuilt and tested immediately after a
new version has been built. This makes it easier to detect bugs and
problems that have been introduced since the last build.

² Change management involves assessing proposals for changes
from system customers and other stakeholders and deciding if it is
cost-effective to implement these in a new version of a system.

² System releases include executable code, data files, configuration
files and documentation. Release management involves making
decisions on system release dates, preparing all information for
distribution and documenting each system release.

Chapter 25 Configuration management 3211/12/2014

Software Engineering Project Management

Reference
• Software Engineering, 10th Edition, Ian

Sommerville.

Software Evolution and Software Configuration Management

CS413 - Software Engineering Project Management

Software Evolution and Software
Configuration Management

Dr. Mustafa Değerli

Department of Computer Engineering, Bilkent University

