
CS413 - Software Engineering Project Management

Software Processes and Software
Development Process Models

Dr. Mustafa Değerli

Department of Computer Engineering, Bilkent University

Chapter 2 – Software
Processes

30/10/2014 Chapter 2 Software Processes 2

Topics covered

• Software process models
• Process activities
• Coping with change
• Process improvement

30/10/2014 Chapter 2 Software Processes 3

The software process

• A structured set of activities required to develop a
software system.
• Many different software processes but all involve:
• Specification – defining what the system should do;
• Design and implementation – defining the organization of the system and

implementing the system;
• Validation – checking that it does what the customer wants;
• Evolution – changing the system in response to changing customer needs.

• A software process model is an abstract representation of a process.
It presents a description of a process from some particular
perspective.

30/10/2014 Chapter 2 Software Processes 4

Software process descriptions

• When we describe and discuss processes, we usually talk about the
activities in these processes such as specifying a data model,
designing a user interface, etc. and the ordering of these activities.
• Process descriptions may also include:
• Products, which are the outcomes of a process activity;
• Roles, which reflect the responsibilities of the people involved in the process;
• Pre- and post-conditions, which are statements that are true before and

after a process activity has been enacted or a product produced.

30/10/2014 Chapter 2 Software Processes 5

Plan-driven and agile processes

• Plan-driven processes are processes where all of the process
activities are planned in advance and progress is measured against
this plan.
• In agile processes, planning is incremental and it is easier to change

the process to reflect changing customer requirements.
• In practice, most practical processes include elements of both plan-

driven and agile approaches.
• There are no right or wrong software processes.

30/10/2014 Chapter 2 Software Processes 6

Software process models

30/10/2014 Chapter 2 Software Processes 7

Software process models

• The waterfall model
• Plan-driven model. Separate and distinct phases of specification and

development.

• Incremental development
• Specification, development and validation are interleaved. May be plan-

driven or agile.

• Integration and configuration
• The system is assembled from existing configurable components. May be

plan-driven or agile.

• In practice, most large systems are developed using a process that
incorporates elements from all of these models.

30/10/2014 Chapter 2 Software Processes 8

The waterfall model

30/10/2014 Chapter 2 Software Processes 9

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Waterfall model phases

• There are separate identified phases in the waterfall model:
• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

• The main drawback of the waterfall model is the difficulty of
accommodating change after the process is underway. In principle, a
phase has to be complete before moving onto the next phase.

30/10/2014 Chapter 2 Software Processes 10

Waterfall model problems

• Inflexible partitioning of the project into distinct stages makes it
difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.
• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering
projects where a system is developed at several sites.
• In those circumstances, the plan-driven nature of the waterfall model helps

coordinate the work.

30/10/2014 Chapter 2 Software Processes 11

Incremental development

30/10/2014 Chapter 2 Software Processes 12

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Incremental development benefits

• The cost of accommodating changing customer requirements is
reduced.
• The amount of analysis and documentation that has to be redone is much

less than is required with the waterfall model.

• It is easier to get customer feedback on the development work that
has been done.
• Customers can comment on demonstrations of the software and see how

much has been implemented.

• More rapid delivery and deployment of useful software to the
customer is possible.
• Customers are able to use and gain value from the software earlier than is

possible with a waterfall process.

30/10/2014 Chapter 2 Software Processes 13

Incremental development problems

• The process is not visible.
• Managers need regular deliverables to measure progress. If systems are

developed quickly, it is not cost-effective to produce documents that reflect
every version of the system.

• System structure tends to degrade as new increments are added.
• Unless time and money is spent on refactoring to improve the software,

regular change tends to corrupt its structure. Incorporating further software
changes becomes increasingly difficult and costly.

30/10/2014 Chapter 2 Software Processes 14

Types of reusable software

• Stand-alone application systems (sometimes called COTS) that are
configured for use in a particular environment.
• Collections of objects that are developed as a package to be

integrated with a component framework such as .NET or J2EE.
• Web services that are developed according to service standards and

which are available for remote invocation.

30/10/2014 Chapter 2 Software Processes 15

Reuse-oriented software engineering

30/10/2014 Chapter 2 Software Processes 16

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
available

Key process stages

• Requirements specification
• Software discovery and evaluation
• Requirements refinement
• Application system configuration
• Component adaptation and integration

30/10/2014 Chapter 2 Software Processes 17

Advantages and disadvantages

• Reduced costs and risks as less software is developed from scratch
• Faster delivery and deployment of system
• But requirements compromises are inevitable so system may not

meet real needs of users
• Loss of control over evolution of reused system elements

30/10/2014 Chapter 2 Software Processes 18

Process activities

30/10/2014 Chapter 2 Software Processes 19

Process activities

• Real software processes are inter-leaved sequences of technical,
collaborative and managerial activities with the overall goal of
specifying, designing, implementing and testing a software system.
• The four basic process activities of specification, development,

validation and evolution are organized differently in different
development processes.
• For example, in the waterfall model, they are organized in sequence,

whereas in incremental development they are interleaved.

30/10/2014 Chapter 2 Software Processes 20

The requirements engineering process

30/10/2014 Chapter 2 Software Processes 21

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

System
descriptions

User and system
requirements

Requirements
document

Software specification

• The process of establishing what services are required and the constraints
on the system’s operation and development.
• Requirements engineering process
• Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?
• Requirements specification

• Defining the requirements in detail
• Requirements validation

• Checking the validity of the requirements

30/10/2014 Chapter 2 Software Processes 22

Software design and implementation

• The process of converting the system specification into an executable
system.
• Software design
• Design a software structure that realises the specification;

• Implementation
• Translate this structure into an executable program;

• The activities of design and implementation are closely related and
may be inter-leaved.

30/10/2014 Chapter 2 Software Processes 23

A general model of the design process

30/10/2014 Chapter 2 Software Processes 24

Interface
design

Component
design

System
architecture

Database
specification

Interface
specification

Requirements
specification

Architectural
design

Component
specification

Platform
information

Data
description

Design inputs

Design activities

Design outputs

Database design

Design activities

• Architectural design, where you identify the overall structure of the
system, the principal components (subsystems or modules), their
relationships and how they are distributed.
• Database design, where you design the system data structures and

how these are to be represented in a database.
• Interface design, where you define the interfaces between system

components.
• Component selection and design, where you search for reusable

components. If unavailable, you design how it will operate.

30/10/2014 Chapter 2 Software Processes 25

System implementation

• The software is implemented either by developing a program or
programs or by configuring an application system.
• Design and implementation are interleaved activities for most types

of software system.
• Programming is an individual activity with no standard process.
• Debugging is the activity of finding program faults and correcting

these faults.

30/10/2014 Chapter 2 Software Processes 26

Software validation

• Verification and validation (V & V) is intended to show that a system
conforms to its specification and meets the requirements of the
system customer.
• Involves checking and review processes and system testing.
• System testing involves executing the system with test cases that are

derived from the specification of the real data to be processed by the
system.
• Testing is the most commonly used V & V activity.

30/10/2014 Chapter 2 Software Processes 27

Stages of testing

30/10/2014 Chapter 2 Software Processes 28

System testing
Component

 testing
Acceptance

testing

Testing stages

• Component testing
• Individual components are tested independently;
• Components may be functions or objects or coherent groupings of these

entities.

• System testing
• Testing of the system as a whole. Testing of emergent properties is

particularly important.

• Customer testing
• Testing with customer data to check that the system meets the customer’s

needs.

30/10/2014 Chapter 2 Software Processes 29

Testing phases in a plan-driven software
process (V-model)

30/10/2014 Chapter 2 Software Processes 30

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Software evolution

• Software is inherently flexible and can change.
• As requirements change through changing business circumstances,

the software that supports the business must also evolve and
change.
• Although there has been a demarcation between development and

evolution (maintenance) this is increasingly irrelevant as fewer and
fewer systems are completely new.

30/10/2014 Chapter 2 Software Processes 31

System evolution

30/10/2014 Chapter 2 Software Processes 32

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

Coping with change

30/10/2014 Chapter 2 Software Processes 33

Coping with change

• Change is inevitable in all large software projects.
• Business changes lead to new and changed system requirements
• New technologies open up new possibilities for improving implementations
• Changing platforms require application changes

• Change leads to rework so the costs of change include both rework
(e.g. re-analysing requirements) as well as the costs of implementing
new functionality

30/10/2014 Chapter 2 Software Processes 34

Reducing the costs of rework

• Change anticipation, where the software process includes activities
that can anticipate possible changes before significant rework is
required.
• For example, a prototype system may be developed to show some key

features of the system to customers.

• Change tolerance, where the process is designed so that changes can
be accommodated at relatively low cost.
• This normally involves some form of incremental development. Proposed

changes may be implemented in increments that have not yet been
developed. If this is impossible, then only a single increment (a small part of
the system) may have be altered to incorporate the change.

30/10/2014 Chapter 2 Software Processes 35

Coping with changing requirements

• System prototyping, where a version of the system or part of the
system is developed quickly to check the customer’s requirements
and the feasibility of design decisions. This approach supports change
anticipation.
• Incremental delivery, where system increments are delivered to the

customer for comment and experimentation. This supports both
change avoidance and change tolerance.

30/10/2014 Chapter 2 Software Processes 36

Incremental delivery

• Rather than deliver the system as a single delivery, the development
and delivery is broken down into increments with each increment
delivering part of the required functionality.
• User requirements are prioritised and the highest priority

requirements are included in early increments.
• Once the development of an increment is started, the requirements

are frozen though requirements for later increments can continue to
evolve.

30/10/2014 Chapter 2 Software Processes 37

Incremental delivery

30/10/2014 Chapter 2 Software Processes 38

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Incremental delivery advantages

• Customer value can be delivered with each increment so system
functionality is available earlier.
• Early increments act as a prototype to help elicit requirements for

later increments.
• Lower risk of overall project failure.
• The highest priority system services tend to receive the most testing.

30/10/2014 Chapter 2 Software Processes 39

Incremental delivery problems

• Most systems require a set of basic facilities that are used by different
parts of the system.
• As requirements are not defined in detail until an increment is to be

implemented, it can be hard to identify common facilities that are needed by all
increments.

• The essence of iterative processes is that the specification is developed
in conjunction with the software.
• However, this conflicts with the procurement model of many organizations,

where the complete system specification is part of the system development
contract.

30/10/2014 Chapter 2 Software Processes 40

Process improvement

30/10/2014 Chapter 2 Software Processes 41

Process improvement

• Many software companies have turned to software process
improvement as a way of enhancing the quality of their software,
reducing costs or accelerating their development processes.
• Process improvement means understanding existing processes and

changing these processes to increase product quality and/or reduce
costs and development time.

30/10/2014 Chapter 2 Software Processes 42

Approaches to improvement

• The process maturity approach, which focuses on improving process
and project management and introducing good software engineering
practice.
• The level of process maturity reflects the extent to which good technical and

management practice has been adopted in organizational software
development processes.

• The agile approach, which focuses on iterative development and the
reduction of overheads in the software process.
• The primary characteristics of agile methods are rapid delivery of

functionality and responsiveness to changing customer requirements.

30/10/2014 Chapter 2 Software Processes 43

Process improvement activities

• Process measurement
• You measure one or more attributes of the software process or product.

These measurements forms a baseline that helps you decide if process
improvements have been effective.

• Process analysis
• The current process is assessed, and process weaknesses and bottlenecks are

identified. Process models (sometimes called process maps) that describe
the process may be developed.

• Process change
• Process changes are proposed to address some of the identified process

weaknesses. These are introduced and the cycle resumes to collect data
about the effectiveness of the changes.

30/10/2014 Chapter 2 Software Processes 44

Process measurement

•Wherever possible, quantitative process data
should be collected

• However, where organisations do not have clearly defined process
standards this is very difficult as you don’t know what to measure. A
process may have to be defined before any measurement is possible.

• Process measurements should be used to
assess process improvements

• But this does not mean that measurements should drive the
improvements. The improvement driver should be the organizational
objectives.

30/10/2014 Chapter 2 Software Processes 45

Process metrics

• Time taken for process activities to be
completed
• E.g. Calendar time or effort to complete an activity or process.

• Resources required for processes or activities
• E.g. Total effort in person-days.

• Number of occurrences of a particular event
• E.g. Number of defects discovered.

30/10/2014 Chapter 2 Software Processes 46

Key points

• Software processes are the activities involved in producing a
software system. Software process models are abstract
representations of these processes.
• General process models describe the organization of software

processes.
• Examples of these general models include the ‘waterfall’ model, incremental

development, and reuse-oriented development.

• Requirements engineering is the process of developing a software
specification.

30/10/2014 Chapter 2 Software Processes 47

Key points

• Design and implementation processes are concerned with
transforming a requirements specification into an executable
software system.
• Software validation is the process of checking that the system

conforms to its specification and that it meets the real needs of the
users of the system.
• Software evolution takes place when you change existing software

systems to meet new requirements. The software must evolve to
remain useful.
• Processes should include activities such as prototyping and

incremental delivery to cope with change.

30/10/2014 Chapter 2 Software Processes 48

Key points

• Processes may be structured for iterative development and delivery
so that changes may be made without disrupting the system as a
whole.
• The principal approaches to process improvement are agile

approaches, geared to reducing process overheads, and maturity-
based approaches based on better process management and the use
of good software engineering practice.

30/10/2014 Chapter 2 Software Processes 49

References
• Software Engineering, 10th Edition, Ian

Sommerville

Software Engineering Project Management

Software Processes and Software Development Process Models

CS413 - Software Engineering Project Management

Software Processes and Software
Development Process Models

Dr. Mustafa Değerli

Department of Computer Engineering, Bilkent University

