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Topics covered

• Software process models
• Process activities
• Coping with change
• Process improvement
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The software process

• A structured set of activities required to develop a 
software system. 
• Many different software processes but all involve:
• Specification – defining what the system should do;
• Design and implementation – defining the organization of the system and 

implementing the system;
• Validation – checking that it does what the customer wants;
• Evolution – changing the system in response to changing customer needs.

• A software process model is an abstract representation of a process. 
It presents a description of a process from some particular 
perspective.
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Software process descriptions

• When we describe and discuss processes, we usually talk about the 
activities in these processes such as specifying a data model, 
designing a user interface, etc. and the ordering of these activities.
• Process descriptions may also include:
• Products, which are the outcomes of a process activity; 
• Roles, which reflect the responsibilities of the people involved in the process;
• Pre- and post-conditions, which are statements that are true before and 

after a process activity has been enacted or a product produced.   
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Plan-driven and agile processes

• Plan-driven processes are processes where all of the process 
activities are planned in advance and progress is measured against 
this plan. 
• In agile processes, planning is incremental and it is easier to change 

the process to reflect changing customer requirements. 
• In practice, most practical processes include elements of both plan-

driven and agile approaches. 
• There are no right or wrong software processes.
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Software process models
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Software process models

• The waterfall model
• Plan-driven model. Separate and distinct phases of specification and 

development.

• Incremental development
• Specification, development and validation are interleaved. May be plan-

driven or agile.

• Integration and configuration
• The system is assembled from existing configurable components. May be 

plan-driven or agile.

• In practice, most large systems are developed using a process that 
incorporates elements from all of these models.

30/10/2014 Chapter 2 Software Processes 8



The waterfall model
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Waterfall model phases

• There are separate identified phases in the waterfall model:
• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

• The main drawback of the waterfall model is the difficulty of 
accommodating change after the process is underway. In principle, a 
phase has to be complete before moving onto the next phase.
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Waterfall model problems

• Inflexible partitioning of the project into distinct stages makes it 
difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process. 
• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering 
projects where a system is developed at several sites.
• In those circumstances, the plan-driven nature of the waterfall model helps 

coordinate the work. 
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Incremental development 
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Incremental development benefits

• The cost of accommodating changing customer requirements is 
reduced. 
• The amount of analysis and documentation that has to be redone is much 

less than is required with the waterfall model.

• It is easier to get customer feedback on the development work that 
has been done. 
• Customers can comment on demonstrations of the software and see how 

much has been implemented. 

• More rapid delivery and deployment of useful software to the 
customer is possible. 
• Customers are able to use and gain value from the software earlier than is 

possible with a waterfall process. 
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Incremental development problems

• The process is not visible. 
• Managers need regular deliverables to measure progress. If systems are 

developed quickly, it is not cost-effective to produce documents that reflect 
every version of the system. 

• System structure tends to degrade as new increments are added. 
• Unless time and money is spent on refactoring to improve the software, 

regular change tends to corrupt its structure. Incorporating further software 
changes becomes increasingly difficult and costly. 
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Types of reusable software

• Stand-alone application systems (sometimes called COTS) that are 
configured for use in a particular environment.
• Collections of objects that are developed as a package to be 

integrated with a component framework such as .NET or J2EE.
• Web services that are developed according to service standards and 

which are available for remote invocation. 
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Reuse-oriented software engineering
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Key process stages

• Requirements specification
• Software discovery and evaluation
• Requirements refinement
• Application system configuration
• Component adaptation and integration
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Advantages and disadvantages

• Reduced costs and risks as less software is developed from scratch
• Faster delivery and deployment of system
• But requirements compromises are inevitable so system may not 

meet real needs of users
• Loss of control over evolution of reused system elements
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Process activities
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Process activities

• Real software processes are inter-leaved sequences of technical, 
collaborative and managerial activities with the overall goal of 
specifying, designing, implementing and testing a software system. 
• The four basic process activities of specification, development, 

validation and evolution are organized differently in different 
development processes. 
• For example, in the waterfall model, they are organized in sequence, 

whereas in incremental development they are interleaved. 
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The requirements engineering process
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Software specification

• The process of establishing what services are required and the constraints 
on the system’s operation and development.
• Requirements engineering process
• Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?
• Requirements specification

• Defining the requirements in detail
• Requirements validation

• Checking the validity of the requirements
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Software design and implementation

• The process of converting the system specification into an executable 
system.
• Software design
• Design a software structure that realises the specification;

• Implementation
• Translate this structure into an executable program;

• The activities of design and implementation are closely related and 
may be inter-leaved.
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A general model of the design process 
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Design activities

• Architectural design, where you identify the overall structure of the 
system, the principal components (subsystems or modules), their 
relationships and how they are distributed.
• Database design, where you design the system data structures and 

how these are to be represented in a database. 
• Interface design, where you define the interfaces between system 

components. 
• Component selection and design, where you search for reusable 

components. If unavailable, you design how it will operate. 
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System implementation

• The software is implemented either by developing a program or 
programs or by configuring an application system.
• Design and implementation are interleaved activities for most types 

of software system.
• Programming is an individual activity with no standard process.
• Debugging is the activity of finding program faults and correcting 

these faults.
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Software validation

• Verification and validation (V & V) is intended to show that a system 
conforms to its specification and meets the requirements of the 
system customer.
• Involves checking and review processes and system testing.
• System testing involves executing the system with test cases that are 

derived from the specification of the real data to be processed by the 
system.
• Testing is the most commonly used V & V activity.
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Stages of testing
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Testing stages

• Component testing
• Individual components are tested independently; 
• Components may be functions or objects or coherent groupings of these 

entities.

• System testing
• Testing of the system as a whole. Testing of emergent properties is 

particularly important.

• Customer testing
• Testing with customer data to check that the system meets the customer’s 

needs.
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Testing phases in a plan-driven software 
process (V-model)
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Software evolution

• Software is inherently flexible and can change. 
• As requirements change through changing business circumstances, 

the software that supports the business must also evolve and 
change.
• Although there has been a demarcation between development and 

evolution (maintenance) this is increasingly irrelevant as fewer and 
fewer systems are completely new.
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System evolution 
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Coping with change
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Coping with change

• Change is inevitable in all large software projects.
• Business changes lead to new and changed system requirements
• New technologies open up new possibilities for improving implementations
• Changing platforms require application changes

• Change leads to rework so the costs of change include both rework 
(e.g. re-analysing requirements) as well as the costs of implementing 
new functionality
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Reducing the costs of rework

• Change anticipation, where the software process includes activities 
that can anticipate possible changes before significant rework is 
required. 
• For example, a prototype system may be developed to show some key 

features of the system to customers. 

• Change tolerance, where the process is designed so that changes can 
be accommodated at relatively low cost.
• This normally involves some form of incremental development. Proposed 

changes may be implemented in increments that have not yet been 
developed. If this is impossible, then only a single increment (a small part of 
the system) may have be altered to incorporate the change.
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Coping with changing requirements

• System prototyping, where a version of the system or part of the 
system is developed quickly to check the customer’s requirements 
and the feasibility of design decisions. This approach supports change 
anticipation. 
• Incremental delivery, where system increments are delivered to the 

customer for comment and experimentation. This supports both 
change avoidance and change tolerance. 
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Incremental delivery

• Rather than deliver the system as a single delivery, the development 
and delivery is broken down into increments with each increment 
delivering part of the required functionality.
• User requirements are prioritised and the highest priority 

requirements are included in early increments.
• Once the development of an increment is started, the requirements 

are frozen though requirements for later increments can continue to 
evolve.
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Incremental delivery 
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Incremental delivery advantages

• Customer value can be delivered with each increment so system 
functionality is available earlier.
• Early increments act as a prototype to help elicit requirements for 

later increments.
• Lower risk of overall project failure.
• The highest priority system services tend to receive the most testing.
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Incremental delivery problems

• Most systems require a set of basic facilities that are used by different 
parts of the system. 
• As requirements are not defined in detail until an increment is to be 

implemented, it can be hard to identify common facilities that are needed by all 
increments. 

• The essence of iterative processes is that the specification is developed 
in conjunction with the software. 
• However, this conflicts with the procurement model of many organizations, 

where the complete system specification is part of the system development 
contract. 
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Process improvement
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Process improvement

• Many software companies have turned to software process 
improvement as a way of enhancing the quality of their software, 
reducing costs or accelerating their development processes. 
• Process improvement means understanding existing processes and 

changing these processes to increase product quality and/or reduce 
costs and development time. 
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Approaches to improvement

• The process maturity approach, which focuses on improving process  
and project management and introducing good software engineering 
practice. 
• The level of process maturity reflects the extent to which good technical and 

management practice has been adopted in organizational software 
development processes. 

• The agile approach, which focuses on iterative development and the 
reduction of overheads in the software process. 
• The primary characteristics of agile methods are rapid delivery of 

functionality and responsiveness to changing customer requirements.
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Process improvement activities

• Process measurement 
• You measure one or more attributes of the software process or product. 

These measurements forms a baseline that helps you decide if process 
improvements have been effective. 

• Process analysis
• The current process is assessed, and process weaknesses and bottlenecks are 

identified. Process models (sometimes called process maps) that describe 
the process may be developed. 

• Process change 
• Process changes are proposed to address some of the identified process 

weaknesses. These are introduced and the cycle resumes to collect data 
about the effectiveness of the changes.
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Process measurement

•Wherever possible, quantitative process data 
should be collected

• However, where organisations do not have clearly defined process 
standards this is very difficult as you don’t know what to measure. A 
process may have to be defined before any measurement is possible.

• Process measurements should be used to 
assess process improvements

• But this does not mean that measurements should drive the 
improvements. The improvement driver should be the organizational 
objectives.
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Process metrics

• Time taken for process activities to be 
completed
• E.g. Calendar time or effort to complete an activity or process.

• Resources required for processes or activities
• E.g. Total effort in person-days.

• Number of occurrences of a particular event
• E.g. Number of defects discovered.

30/10/2014 Chapter 2 Software Processes 46



Key points

• Software processes are the activities involved in producing a 
software system. Software process models are abstract 
representations of these processes.
• General process models describe the organization of software 

processes. 
• Examples of these general models include the ‘waterfall’ model,  incremental 

development, and reuse-oriented development.

• Requirements engineering is the process of developing a software 
specification.
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Key points

• Design and implementation processes are concerned with 
transforming a requirements specification into an executable 
software system. 
• Software validation is the process of checking that the system 

conforms to its specification and that it meets the real needs of the 
users of the system.
• Software evolution takes place when you change existing software 

systems to meet new requirements. The software must evolve to 
remain useful.
• Processes should include activities such as prototyping and 

incremental delivery to cope with change.
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Key points

• Processes may be structured for iterative development and delivery 
so that changes may be made without disrupting the system as a 
whole.
• The principal approaches to process improvement are agile 

approaches, geared to reducing process overheads, and maturity-
based approaches based on better process management and the use 
of good software engineering practice.
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